马上注册,结交更多好友,享用更多功能,让你轻松玩转社区。
您需要 登录 才可以下载或查看,没有账号?立即注册
x
本帖最后由 longyangagent 于 2016-4-15 19:28 编辑
http://www.ncbi.nlm.nih.gov/pubmed/26579470Acta Pharm Sin B.
2015 Sep;5(5):390-401. doi: 10.1016/j.apsb.2015.07.001. Epub 2015 Jul 26.
Mechanisms of resistance to EGFR tyrosine kinase inhibitors.
1、EGFR突变信号通路
2、EGFR二次突变,主要是T790M,其次是 L747S, D761Y and T854A
3、旁通信号bypass
3.1 HER 其他家族成员的异常
3.2 CMT扩增
3.3 HGF过表达
3.4 IGFR异常
3.5 异常血管生长通路
3.5.1 VEGFs 及其受体
3.5.2 FGFs 及其受体
3.5.3. PDGFRs及其受体
3.6. EGFRvIII
3.7. AXL过表达
3.8. IL-6过分泌
3.9. Amplification of Crk-like protein (CRKL扩增)
3.10. Overexpression and activation of integrin beta1-整合素β1的过表达和激活
4、异常下游信号
4.1. K-RAS 突变
4.2. PTEN丢失
4.3. BRAF突变
4.4. PIK3CA突变
4.5. NF1异常表达
5. BIM损伤
6、组织类型的变化
6.1. EMT
6.2小细胞肺癌转换
7. ATP binding cassette (ABC) effusion
8. EML4-ALK融合基因和二次突变
9。治疗策略:联合治疗
Resistant mechanism
耐药机制 | Strategy
治疗策略 | Clinical research
临床研究 | Ref.
参考文献 | EGFRmutation | T790M | EGFR-TKIs combined/+antibodies | Afatinib+cexitumab | 80 | | T790M-specific inhibitors | CO-1686/AZD9291 | 81, 82 | | c-Met inhibitors+PI3K inhibitors | GDC0973+GDC0941 | 83 | | HSP90 inhibitors | Luteolin/ganetespib | 11, 84 |
| EGFR-TKIs+MEK inhibitors | Afatinib+ARQ 197 | 85 | | Glycolysis inhibition+EGFR-TKIs | Afatinib+AUY922 | 86 | | Bypass pathway | HER family abnormality | HER inhibitors+EGFR-TKIs | Afatinib/dacomitinib | 18, 87 | c-Met amplification | EGFR-TKIs+c-Met inhibitors | Erlotinib+crizotinib | 88 | Dacomitinib+crizotinib | HGF overexpression | EGFR-TKIs+PI3K inhibitors | Gefitinib+PI-103 | 89 | | Triple inhibition of EGFR/Met/VEGF | – | 90 | IGFR abnormality | IGFR inhibitors+EGFR-TKIs | AG1024+gefitinib | – |
EGFRvIII | EGFRvIII antibodies | – | – | VEGF/VEGFR abnormality | EGFR-TKIs+VEGF inhibitors | ZD6474 | 91 | | MEK inhibitors+VEGF inhibitors | ZD6474+PD0325901 | 30 | PDGF/PDGFR abnormality | EGFR-TKIs+PDGF inhibitors | – | – | FGF/FGFR abnormality | EGFR-TKIs+FGF inhibitors | – | – | IL-6 abnormality | IL-6 antibodies | Siltuximab | 92 | AXL abnormality | AXL inhibitors | NPS-1034 | 93 | CRKL amplification | Unknown | Unknown | – | Integrin beta1 overexpression | Unknown | Unknown | – | | Downstream pathway | K-RAS mutations | PI3K inhibitors+MEK inhibitors | GDC-0941+AZD6244 | 94 | BRAF mutations | BRAF inhibitors+MEK inhibitors | Dabrafenib+trametinib | 95 | Loss of PTEN | mTOR inhibitors/AKT |
inhibitors | – | – | PIK3CA mutation | EGFR-TKIs+PI3K inhibitors | Gefitinib+BKM120 | 96 | Low expression of NF1 | Unknown | Unknown | – | | Apoptosis pathway | BIM BH3 deletion | EGFR-TKIs+PP2A activator | Erlotinib+FTY720 gefitinib+FTY720 | 62 | | Histologic transformation | EMT | EGFR-TKIs+MEK1/2 inhibitors | – | – |
SCLC transformation | Platinum+VP16/EGFR-TKIs | – | – | | ABC effusion | EGFR-TKIs+HER-2 inhibitors | GW583340/GW2974 | 73 |
| Unknown mechanism | EGFR-TKIs combined | Afatinib+cexitumab | 80 | EGFR-TKIs+glycolysis inhibitors | Erlotinib+AUY922 | References
1. Ciardiello F., Tortora G. EGFR antagonists in cancer treatment. N Engl J Med. 2008;358:1160–1174.[PubMed]
2. Bethune G., Bethune D., Ridgway N., Xu Z. Epidermal growth factor receptor (EGFR) in lung cancer: an overview and update. J Thorac Dis. 2010;2:48–51.[PubMed]
3. Yu H.A., Arcila M.E., Rekhtman N., Sima C.S., Zakowski M.F., Pao W. Analysis of tumor specimens at the time of acquired resistance to EGFR-TKI therapy in 155 patients with EGFR-mutant lung cancers. Clin Cancer Res. 2013;19:2240–2247.[PubMed]
4. Kobayashi S., Boggon T.J., Dayaram T., Jänne P.A., Kocher O., Meyerson M. EGFR mutation and resistance of non-small-cell lung cancer to gefitinib. N Engl J Med. 2005;352:786–792.[PubMed]
5. Yun C.H., Mengwasser K.E., Toms A.V., Woo M.S., Greulich H., Wong K.K. The T790M mutation in EGFR kinase causes drug resistance by increasing the affinity for ATP. Proc Natl Acad Sci U S A. 2008;105:2070–2075.[PubMed]
6. Ma C., Wei S., Song Y. T790M and acquired resistance of EGFR TKI: a literature review of clinical reports. J Thorac Dis. 2011;3:10–18.[PubMed]
7. Fujita Y., Suda K., Kimura H., Matsumoto K., Arao T., Nagai T. Highly sensitive detection of EGFR T790M mutation using colony hybridization predicts favorable prognosis of patients with lung cancer harboring activating EGFR mutation. J Thorac Oncol. 2012;7:1640–1644.[PubMed]
8. Su K.Y., Chen H.Y., Li K.C., Kuo M.L., Yang J.C., Chan W.K. Pretreatment epidermal growth factor receptor (EGFR) T790M mutation predicts shorter EGFR tyrosine kinase inhibitor response duration in patients with non-small-cell lung cancer. J Clin Oncol. 2012;30:433–440.[PubMed]
9. Suda K., Onozato R., Yatabe Y., Mitsudomi T. EGFR T790M mutation: a double role in lung cancer cell survival? J Thorac Oncol. 2009;4:1–4.[PubMed]
10. Hong Y.S., Jang W.J., Chun K.S., Jeong C.H. Hsp90 inhibition by WK88-1 potently suppresses the growth of gefitinib-resistant H1975 cells harboring the T790M mutation in EGFR. Oncol Rep. 2014;31:2619–2624.[PubMed]
11. Smith D.L., Acquaviva J., Sequeira M., Jimenez J.P., Zhang C., Sang J. The HSP90 inhibitor ganetespib potentiates the antitumor activity of EGFR tyrosine kinase inhibition in mutant and wild-type non-small cell lung cancer. Target Oncol. 2015;10:235–245.[PubMed]
12. Costa D.B., Halmos B., Kumar A., Schumer S.T., Huberman M.S., Boggon T.J. BIM mediates EGFR tyrosine kinase inhibitor-induced apoptosis in lung cancers with oncogenic EGFR mutations. PLoS Med. 2007;4:1669–1679.[PubMed]
13. Toyooka S., Date H., Uchida A., Kiura K., Takata M. The epidermal growth factor receptor D761Y mutation and effect of tyrosine kinase inhibitor. Clin Cancer Res. 2007;13:3431.[PubMed]
14. Bean J., Riely G.J., Balak M., Marks J.L., Ladanyi M., Miller V.A. Acquired resistance to epidermal growth factor receptor kinase inhibitors associated with a novel T854A mutation in a patient with EGFR-mutant lung adenocarcinoma. Clin Cancer Res. 2008;14:7519–7525.[PubMed]
15. Woo H.S., Ahn H.K., Lee H.Y., Park I., Kim Y.S., Hong J. Epidermal growth factor receptor (EGFR) exon 20 mutations in non-small-cell lung cancer and resistance to EGFR-tyrosine kinase inhibitors. Invest New Drugs. 2014;32:1311–1315.[PubMed]
16. Khan N.A., Mirshahidi S., Mirshahidi H.R. A novel insertion mutation on exon 20 of epidermal growth factor receptor, conferring resistance to erlotinib. Case Rep Oncol. 2014;7:491–496.[PubMed]
17. Landi L., Cappuzzo F. HER2 and lung cancer. Expert Rev Anticancer Ther. 2013;13:1219–1228.[PubMed]
18. Nishida Y., Kuwata T., Nitta H., Dennis E., Aizawa M., Kinoshita T. A novel gene–protein assay for evaluating HER2 status in gastric cancer: simultaneous analyses of HER2 protein overexpression and gene amplification reveal intratumoral heterogeneity. Gastric Cancer. 2014 Jun 11 [PubMed]
19. Engelman J.A., Zejnullahu K., Mitsudomi T., Song Y., Hyland C., Park J.O. MET amplification leads to gefitinib resistance in lung cancer by activating ERBB3 signaling. Science. 2007;316:1039–1043.[PubMed]
20. Xia W., Petricoin E.F., 3rd, Zhao S., Liu L., Osada T., Cheng Q. An heregulin–EGFR–HER3 autocrine signaling axis can mediate acquired lapatinib resistance in HER2+ breast cancer models. Breast Cancer Res. 2013;15:R85.[PubMed]
21. Nakata S., Tanaka H., Ito Y., Hara M., Fujita M., Kondo E. Deficient HER3 expression in poorly-differentiated colorectal cancer cells enhances gefitinib sensitivity. Int J Oncol. 2014;45:1583–1593.[PubMed]
22. Schoeberl B., Faber A.C., Li D., Liang M.C., Crosby K., Onsum M. An ErbB3 antibody, MM-121, is active in cancers with ligand-dependent activation. Cancer Res. 2010;70:2485–2494.[PubMed]
23. Kubo T., Yamamoto H., Lockwood W.W., Valencia I., Soh J., Peyton M. MET gene amplification or EGFR mutation activate MET in lung cancers untreated with EGFR tyrosine kinase inhibitors. Int J Cancer. 2009;124:1778–1784.[PubMed]
24. Yano S., Wang W., Li Q., Matsumoto K., Sakurama H., Nakamura T. Hepatocyte growth factor induces gefitinib resistance of lung adenocarcinoma with epidermal growth factor receptor-activating mutations. Cancer Res. 2008;68:9479–9487.[PubMed]
25. Mueller K.L., Madden J.M., Zoratti G.L., Kuperwasser C., List K., Boerner J.L. Fibroblast-secreted hepatocyte growth factor mediates epidermal growth factor receptor tyrosine kinase inhibitor resistance in triple-negative breast cancers through paracrine activation of Met. Breast Cancer Res. 2012;14:R104.[PubMed]
26. Guix M., Faber A.C., Wang S.E., Olivares M.G., Song Y., Qu S. Acquired resistance to EGFR tyrosine kinase inhibitors in cancer cells is mediated by loss of IGF-binding proteins. J Clin Invest. 2008;118:2609–2619.[PubMed]
27. Peled N., Wynes M.W., Ikeda N., Ohira T., Yoshida K., Qian J. Insulin-like growth factor-1 receptor (IGF-1R) as a biomarker for resistance to the tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. Cell Oncol. 2013;36:277–288. [PMC free article][PubMed]
28. Jameson M.J., Taniguchi L.E., VanKoevering K.K., Stuart M.M., Francom C.R., Mendez R.E. Activation of the insulin-like growth factor-1 receptor alters p27 regulation by the epidermal growth factor receptor in oral squamous carcinoma cells. J Oral Pathol Med. 2013;42:332–338.[PubMed]
29. Ballas M.S., Chachoua A. Rationale for targeting VEGF, FGF, and PDGF for the treatment of NSCLC. Onco Targets Ther. 2011;4:43–58.[PubMed]
30. Chatterjee S., Heukamp L.C., Siobal M., Schöttle J., Wieczorek C., Peifer M. Tumor VEGF:VEGFR2 autocrine feed-forward loop triggers angiogenesis in lung cancer. J Clin Invest. 2013;123:1732–1740.[PubMed]
31. Bianco R., Rosa R., Damiano V., Daniele G., Gelardi T., Garofalo S. Vascular endothelial growth factor receptor-1 contributes to resistance to anti-epidermal growth factor receptor drugs in human cancer cells. Clin Cancer Res. 2008;14:5069–5080.[PubMed]
32. Ware K.E., Marshall M.E., Heasley L.R., Marek L., Hinz T.K., Hercule P. Rapidly acquired resistance to EGFR tyrosine kinase inhibitors in NSCLC cell lines through de-repression of FGFR2 and FGFR3 expression. PLoS One. 2010;5:e14117.[PubMed]
33. Azuma K., Kawahara A., Sonoda K., Nakashima K., Tashiro K., Watari K. FGFR1 activation is an escape mechanism in human lung cancer cells resistant to afatinib, a pan-EGFR family kinase inhibitor. Oncotarget. 2014;5:5908–5919.[PubMed]
34. Akhavan D., Pourzia A.L., Nourian A.A., Williams K.J., Nathanson D., Babic I. De-repression of PDGFRβ transcription promotes acquired resistance to EGFR tyrosine kinase inhibitors in glioblastoma patients. Cancer Discov. 2013;3:534–547.[PubMed]
35. Bonavia R., Inda M.M., Vandenberg S., Cheng S.Y., Nagane M., Hadwiger P. EGFRvIII promotes glioma angiogenesis and growth through the NF-κB, interleukin-8 pathway. Oncogene. 2012;31:4054–4066.[PubMed]
36. Katanasaka Y., Kodera Y., Kitamura Y., Morimoto T., Tamura T., Koizumi F. Epidermal growth factor receptor variant type III markedly accelerates angiogenesis and tumor growth via inducing c-myc mediated angiopoietin-like 4 expression in malignant glioma. Mol Cancer. 2013;12:31.[PubMed]
37. Zhang Z., Lee J.C., Lin L., Olivas V., Au V., LaFramboise T. Activation of the AXL kinase causes resistance to EGFR-targeted therapy in lung cancer. Nat Genet. 2012;44:852–860.[PubMed]
38. Lee Y., Lee M., Kim S. GAS6 induces cancer cell migration and epithelial–mesenchymal transition through upregulation of MAPK and Slug. Biochem Biophys Res Commun. 2013;434:8–14.[PubMed]
39. Kim S.M., Kwon O.J., Hong Y.K., Kim J.H., Solca F., Ha S.J. Activation of IL-6R/JAK1/STAT3 signaling induces de novo resistance to irreversible EGFR inhibitors in non-small cell lung cancer with T790M resistance mutation. Mol Cancer Ther. 2012;11:2254–2264.[PubMed]
40. Ishiguro Y., Ishiguro H., Miyamoto H. Epidermal growth factor receptor tyrosine kinase inhibition up-regulates interleukin-6 in cancer cells and induces subsequent development of interstitial pneumonia. Oncotarget. 2013;4:550–559.[PubMed]
41. Wang Y., van Boxel-Dezaire A.H., Cheon H., Yang J., Stark G.R. STAT3 activation in response to IL-6 is prolonged by the binding of IL-6 receptor to EGF receptor. Proc Natl Acad Sci U S A. 2013;110:16975–16980.[PubMed]
42. Yao Z., Fenoglio S., Gao D.C., Camiolo M., Stiles B., Lindsted T. TGF-β IL-6 axis mediates selective and adaptive mechanisms of resistance to molecular targeted therapy in lung cancer. Proc Natl Acad Sci U S A. 2010;107:15535–15540.[PubMed]
43. Suda K., Mizuuchi H., Murakami I., Uramoto H., Tanaka F., Sato K. CRKL amplification is rare as a mechanism for acquired resistance to kinase inhibitors in lung cancers with epidermal growth factor receptor mutation. Lung Cancer. 2014;85:147–151.[PubMed]
44. Cheung H.W., Du J., Boehm J.S., He F., Weir B.A., Wang X. Amplification of CRKL induces transformation and epidermal growth factor receptor inhibitor resistance in human non-small cell lung cancers. Cancer Discov. 2011;1:608–625.[PubMed]
45. Lin F., Xie C.Y., Li Q.C., Dong Q.Z., Wang E.H., Wang Y. CRKL promotes lung cancer cell invasion through ERK–MMP9 pathway. Mol Carcinog. 2015;54 Suppl 1:E35–44.[PubMed]
46. Ju L., Zhou C., Li W., Yan L. Integrin beta1 over-expression associates with resistance to tyrosine kinase inhibitor gefitinib in non-small cell lung cancer. J Cell Biochem. 2010;111:1565–1574.[PubMed]
47. Huang C., Park C.C., Hilsenbeck S.G., Ward R., Rimawi M.F., Wang Y.C. β1 Integrin mediates an alternative survival pathway in breast cancer cells resistant to lapatinib. Breast Cancer Res. 2011;13:R84.[PubMed]
48. Ju L., Zhou C. Association of integrin beta1 and c-MET in mediating EGFR TKI gefitinib resistance in non-small cell lung cancer. Cancer Cell Int. 2013;13:15.[PubMed]
49. Kanda R., Kawahara A., Watari K., Murakami Y., Sonoda K., Maeda M. Erlotinib resistance in lung cancer cells mediated by integrin β1/Src/Akt-driven bypass signaling. Cancer Res. 2013;73:6243–6253.[PubMed]
50. Brown W.S., Wendt M.K. Integrin-mediated resistance to epidermal growth factor receptor-targeted therapy: an inflammatory situation. Breast Cancer Res. 2014;16:448.[PubMed]
51. Pao W., Wang T.Y., Riely G.J., Miller V.A., Pan Q., Ladanyi M. KRAS mutations and primary resistance of lung adenocarcinomas to gefitinib or erlotinib. PLoS Med. 2005;2:e17.[PubMed]
52. de Mello R.A., Marques D.S., Medeiros R., Araújo A.M. Epidermal growth factor receptor and K-RAS in non-small cell lung cancer-molecular pathways involved and targeted therapies. World J Clin Oncol. 2011;2:367–376.[PubMed]
53. Repasky G.A., Chenette E.J., Der C.J. Renewing the conspiracy theory debate: does RAF function alone to mediate RAS oncogenesis? Trends Cell Biol. 2004;14:639–647.[PubMed]
54. Bidkhori G., Moeini A., Masoudi-Nejad A. Modeling of tumor progression in NSCLC and intrinsic resistance to TKI in loss of PTEN expression. PLoS One. 2012;7:e48004.[PubMed]
55. Sos M.L., Koker M., Weir B.A., Heynck S., Rabinovsky R., Zander T. PTEN loss contributes to erlotinib resistance in EGFR-mutant lung cancer by activation of Akt and EGFR. Cancer Res. 2009;69:3256–3261.[PubMed]
56. Kim E.J., Jeong J.H., Bae S., Kang S., Kim C.H., Lim Y.B. mTOR inhibitors radiosensitize PTEN-deficient non-small-cell lung cancer cells harboring an EGFR activating mutation by inducing autophagy. J Cell Biochem. 2013;114:1248–1256.[PubMed]
57. Ohashi K., Sequist L.V., Arcila M.E., Moran T., Chmielecki J., Lin Y.L. Lung cancers with acquired resistance to EGFR inhibitors occasionally harbor BRAF gene mutations but lack mutations in KRAS, NRAS, or MEK1. Proc Natl Acad Sci U S A. 2012;109:E2127–E2133.[PubMed]
58. Whyte D.B., Holbeck S.L. Correlation of PIK3CA mutations with gene expression and drug sensitivity in NCI-60 cell lines. Biochem Biophys Res Commun. 2006;340:469–475.[PubMed]
59. Wang L., Hu H., Pan Y., Wang R., Li Y., Shen L. PIK3CA mutations frequently coexist with EGFR/KRAS mutations in non-small cell lung cancer and suggest poor prognosis in EGFR/KRAS wildtype subgroup. PLoS One. 2014;9:e88291.[PubMed]
60. Bruin E.C., Cowell C., Warne P.H., Jiang M., Saunders R.E., Melnick M.A. Reduced NF1 expression confers resistance to EGFR inhibition in lung cancer. Cancer Discov. 2014;4:606–619. de. [PubMed]
61. Ng K.P., Hillmer A.M., Chuah C.T., Juan W.C., Ko T.K., Teo A.S. A common BIM deletion polymorphism mediates intrinsic resistance and inferior responses to tyrosine kinase inhibitors in cancer. Nat Med. 2012;18:521–528.[PubMed]
62. Kiyota M., Kuroda J., Yamamoto-Sugitani M., Shimura Y., Nakayama R., Nagoshi H. FTY720 induces apoptosis of chronic myelogenous leukemia cells via dual activation of BIM and BID and overcomes various types of resistance to tyrosine kinase inhibitors. Apoptosis. 2013;18:1437–1446.[PubMed]
63. Thiery J.P. Epithelial–mesenchymal transitions in tumour progression. Nat Rev Cancer. 2002;2:442–454.[PubMed]
64. Bae G.Y., Choi S.J., Lee J.S., Jo J., Lee J., Kim J. Loss of E-cadherin activates EGFR–MEK/ERK signaling, which promotes invasion via the ZEB1/MMP2 axis in non-small cell lung cancer. Oncotarget. 2013;4:2512–2522.[PubMed]
65. Palena C., Hamilton D.H., Fernando R.I. Influence of IL-8 on the epithelial–mesenchymal transition and the tumor microenvironment. Future Oncol. 2012;8:713–722.[PubMed]
66. Xie M., He C.S., Wei S.H., Zhang L. Notch-1 contributes to epidermal growth factor receptor tyrosine kinase inhibitor acquired resistance in non-small cell lung cancer in vitro and in vivo. Eur J Cancer. 2013;49:3559–3572.[PubMed]
67. Capaccione K.M., Hong X., Morgan K.M., Liu W., Bishop J.M., Liu L. Sox9 mediates Notch1-induced mesenchymal features in lung adenocarcinoma. Oncotarget. 2014;5:3636–3650.[PubMed]
68. Xu M.M., Mao G.X., Liu J., Li J.C., Huang H., Liu Y.F. Low expression of the FoxO4 gene may contribute to the phenomenon of EMT in non-small cell lung cancer. Asian Pac J Cancer Prev. 2014;15:4013–4018.[PubMed]
69. Park K.S., Raffeld M., Moon Y.W., Xi L., Bianco C., Pham T. CRIPTO1 expression in EGFR-mutant NSCLC elicits intrinsic EGFR-inhibitor resistance. J Clin Invest. 2014;124:3003–3015.[PubMed]
70. Wilson C., Nicholes K., Bustos D., Lin E., Song Q., Stephan J.P. Overcoming EMT-associated resistance to anti-cancer drugs via Src/FAK pathway inhibition. Oncotarget. 2014;5:7328–7341.[PubMed]
71. Alam N., Gustafson K.S., Ladanyi M., Zakowski M.F., Kapoor A., Truskinovsky A.M. Small-cell carcinoma with an epidermal growth factor receptor mutation in a never-smoker with gefitinib-responsive adenocarcinoma of the lung. Clin Lung Cancer. 2010;11:E1–E4.[PubMed]
72. Shi Z., Tiwari A.K., Shukla S., Robey R.W., Singh S., Kim I.W. Sildenafil reverses ABCB1- and ABCG2-mediated chemotherapeutic drug resistance. Cancer Res. 2011;71:3029–3041.[PubMed]
73. Sodani K., Tiwari A.K., Singh S., Patel A., Xiao Z.J., Chen J.J. GW583340 and GW2974, human EGFR and HER-2 inhibitors, reverse ABCG2- and ABCB1-mediated drug resistance. Biochem Pharmacol. 2012;83:1613–1622.[PubMed]
74. Soda M., Choi Y.L., Enomoto M., Takada S., Yamashita Y., Ishikawa S. Identification of the transforming EML4-ALK fusion gene in non-small-cell lung cancer. Nature. 2007;448:561–566.[PubMed]
75. Kwak E.L., Bang Y.J., Camidge D.R., Shaw A.T., Solomon B., Maki R.G. Anaplastic lymphoma kinase inhibition in non-small-cell lung cancer. N Engl J Med. 2010;363:1693–1703.[PubMed]
76. Zhang X., Zhang S., Yang X., Yang J., Zhou Q., Yin L. Fusion of EML4 and ALK is associated with development of lung adenocarcinomas lacking EGFR and KRAS mutations and is correlated with ALK expression. Mol Cancer. 2010;9:188.[PubMed]
77. Pearson R., Kolesar J.M. Targeted therapy for NSCLC: ALK inhibition. J Oncol Pharm Pract. 2012;18:271–274.[PubMed]
78. Yamada T., Takeuchi S., Nakade J., Kita K., Nakagawa T., Nanjo S. Paracrine receptor activation by microenvironment triggers bypass survival signals and ALK inhibitor resistance in EML4-ALK lung cancer cells. Clin Cancer Res. 2012;18:3592–3602.[PubMed]
79. Sasaki T., Koivunen J., Ogino A., Yanagita M., Nikiforow S., Zheng W. A novel ALK secondary mutation and EGFR signaling cause resistance to ALK kinase inhibitors. Cancer Res. 2011;71:6051–6060.[PubMed]
80. Perez-Torres M., Guix M., Gonzalez A., Arteaga C.L. Epidermal growth factor receptor (EGFR) antibody down-regulates mutant receptors and inhibits tumors expressing EGFR mutations. J Biol Chem. 2006;281:40183–40192.[PubMed]
81. Walter A.O., Sjin R.T., Haringsma H.J., Ohashi K., Sun J., Lee K. Discovery of a mutant-selective covalent inhibitor of EGFR that overcomes T790M-mediated resistance in NSCLC. Cancer Discov. 2013;3:1404–1415.[PubMed]
82. Cross D.A., Ashton S.E., Ghiorghiu S., Eberlein C., Nebhan C.A., Spitzler P.J. AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov. 2014;4:1046–1061.[PubMed]
83. Hoeflich K.P., Merchant M., Orr C., Chan J., Den Otter D., Berry L. Intermittent administration of MEK inhibitor GDC-0973 plus PI3K inhibitor GDC-0941 triggers robust apoptosis and tumor growth inhibition. Cancer Res. 2012;72:210–219.[PubMed]
84. Hong Z., Cao X., Li N., Zhang Y., Lan L., Zhou Y. Luteolin is effective in the non-small cell lung cancer model with L858R/T790M EGF receptor mutation and erlotinib resistance. Br J Pharmacol. 2014;171:2842–2853.[PubMed]
85. Qu G., Liu C., Sun B., Zhou C., Zhang Z., Wang P. Combination of BIBW2992 and ARQ 197 is effective against erlotinib-resistant human lung cancer cells with the EGFR T790M mutation. Oncol Rep. 2014;32:341–347.[PubMed]
86. Kim S.M., Yun M.R., Hong Y.K., Solca F., Kim J.H., Kim H.J. Glycolysis inhibition sensitizes non-small cell lung cancer with T790M mutation to irreversible EGFR inhibitors via translational suppression of Mcl-1 by AMPK activation. Mol Cancer Ther. 2013;12:2145–2156.[PubMed]
87. Engelman J.A., Zejnullahu K., Gale C.M., Lifshits E., Gonzales A.J., Shimamura T. PF00299804, an irreversible pan-ERBB inhibitor, is effective in lung cancer models with EGFR and ERBB2 mutations that are resistant to gefitinib. Cancer Res. 2007;67:11924–11932.[PubMed]
88. Nanjo S., Yamada T., Nishihara H., Takeuchi S., Sano T., Nakagawa T. Ability of the Met kinase inhibitor crizotinib and new generation EGFR inhibitors to overcome resistance to EGFR inhibitors. PLoS One. 2013;8:e84700.[PubMed]
89. Graves E.E., Maity A., Le Q.T. The tumor microenvironment in non-small-cell lung cancer. Semin Radiat Oncol. 2010;20:156–163.[PubMed]
90. Nakade J., Takeuchi S., Nakagawa T., Ishikawa D., Sano T., Nanjo S. Triple inhibition of EGFR, Met, and VEGF suppresses regrowth of HGF-triggered, erlotinib-resistant lung cancer harboring an EGFR mutation. J Thorac Oncol. 2014;9:775–783.[PubMed]
91. Sarkar S., Rajput S., Tripathi A.K., Mandal M. Targeted therapy against EGFR and VEGFR using ZD6474 enhances the therapeutic potential of UV-B phototherapy in breast cancer cells. Mol Cancer. 2013;12:122.[PubMed]
92. Song L., Smith M.A., Doshi P., Sasser K., Fulp W., Altiok S. Antitumor efficacy of the anti-interleukin-6 (IL-6) antibody siltuximab in mouse xenograft models of lung cancer. J Thorac Oncol. 2014;9:974–982.[PubMed]
93. Rho J.K., Choi Y.J., Kim S.Y., Kim T.W., Choi E.K., Yoon S.J. MET and AXL inhibitor NPS-1034 exerts efficacy against lung cancer cells resistant to EGFR kinase inhibitors because of MET or AXL activation. Cancer Res. 2014;74:253–262.[PubMed]
94. Hofmann I., Weiss A., Elain G., Schwaederle M., Sterker D., Romanet V. K-RAS mutant pancreatic tumors show higher sensitivity to MEK than to PI3K inhibition in vivo. PLoS One. 2012;7:e44146.[PubMed]
95. Rutkowski P., Blank C. Dabrafenib for the treatment of BRAF V600-positive melanoma: a safety evaluation. Expert Opin Drug Saf. 2014;13:1249–1258.[PubMed]
96. Ren H., Zhao L., Li Y., Yue P., Deng X., Owonikoko T.K. The PI3 kinase inhibitor NVP-BKM120 induces GSK3/FBXW7-dependent Mcl-1 degradation, contributing to induction of apoptosis and enhancement of TRAIL-induced apoptosis. Cancer Lett. 2013;338:229–238.[PubMed]
|
|